ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Bret Patrick van den Akker (ORNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 615-621
We present the analytical solution to the one-dimensional radionuclide transport equation in Laplace transform space. Our model accommodates an arbitrary-length decay chain, an arbitrary combination of host rocks (i.e., an arbitrary combination of multiply fractured and porous transport segments), and a flexible source term (i.e., an arbitrary time-dependent release mode at the entrance point to the series of transport segments). The Laplace transformed analytical solution can be numerically inverted to obtain the time-dependent concentration of the radionuclides of interest at an arbitrary down gradient location. This represents an extension of the previously1 developed model to include the feature of hydrodynamic longitudinal dispersion. This additional feature is important because hydrodynamic dispersion is known to reduce the time of first arrival in radionuclide transport models. Increased fidelity in transport pathway calculations is important for reliable performance assessment for the geological disposal of spent nuclear fuels.