ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Alex Salazar, Massimiliano Fratoni, Joonhong Ahn (Univ of California, Berkeley), Fumio Hirano (JAEA/International Research Inst for Nuclear Decommissioning)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 600-607
The safety assessment of a geological repository for used nuclear fuel must ensure that future generations are shielded from radiation from fission products, in particular those released by re-criticality events. An investigation is required to understand whether or not criticality can actually be achieved. In fulfilling this end, this study assesses the uncertainty in the composition and total mass of precipitates forming in the far-field due to variation in transport parameters. The Latin Hypercube Sampling technique is employed to generate an accurate, random distribution of variables employed in the transport model and to assess the uncertainty of attaining a critical mass. The average characteristics of the damaged fuel from the Fukushima Daiichi reactor cores is used as the reference waste form. Results are compared to the minimum critical masses of previous studies to assess the criticality safety margin.