ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Yung-Shin Tseng, Chu Ching Hau, Jong-Rong Wang (NTHU), Po-Hsiu Lee, Chih-Tien Liu (Atomic Energy Council), Chunkuan Shih (NTHU)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 580-586
Since the Chloride-Induced Stress Corrosion Cracking (CI-SCC) has been attended in the Chinshan ISFSI project, the details of thermal information and humidity on the Transportable Storage Canister (TSC) becomes the valuable data for investigating the CISCC aging management. This is because that the temperature not only influenced the threshold of deliquescence but affected the growth rate of crack depth. Since the chloride salt only becomes deliquescent in specific situation depending on the site (e.g., the environment temperature and relative humidity) and cask (e.g., loading pattern and thermal load) condition of CSISFSI, which can be further evaluated by an applicable simulated methodology. In this study, a computational fluid dynamics (CFD), FLUENT, was utilized to investigate the temperature and considered the temperature with the relative humidity profile on each height of TSC shell of CSISFSI. A validated high-accuracy 2D model was developed to accelerate the simulation time due to the time scale of CISCC being up to 20 years. The result shows that the relative humidity will reduce as the temperature of TSC increases by decay heat of SNFs. For this reason, the maximum accumulated crack depth of the TSC will not exceed more than 0.36m height with 0.33mm/year, which is the maximum crack growth rate as the most conservative CaCl2 deliquescent threshold was assumed for prediction. Those quantized results not only prove that the re-inspection planning with 10 year period is enough to ensure the integrity of TSC but also provide a basis to reduce about 90% load for CSISFSI re-inspection work.