ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Erich Wieland, Benjamin Z. Cvetkovi?, Dominik Kunz (Scherrer Inst), Gary Salazar, Söenke Szidat (Univ of Bern)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 506-511
Carbon-14 is an important radionuclide in the inventory of radioactive waste. In Switzerland, the 14C inventory in a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (?85 %). In light water reactors (LWR) 14C is the product of 14N activation in steel parts exposed to thermal neutron flux. 14C has been identified a key radionuclide in safety assessments. Release of 14C occurs due to slow corrosion of activated steel in the near field of a deep geological repository. While the 14C inventory is well known, the speciation of 14C upon release from activated steel is only poorly understood. The present study is aimed at investigating the formation of carbon species during the anoxic corrosion of iron and steel and determining the 14C species formed in a corrosion experiment with activated steel. The experiments were carried out in conditions similar to those anticipated in the near field of a cement-based repository.