ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Miguel Morales Gutierrez, Stefano Caruso, Nikitas Diomidis (Nagra)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 498-505
According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier concept, providing containment of the SNF for at least 10,000 years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfillment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms.
The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations are carried out using the SCALE6.2 package (KENO-VI for criticality; MAVRIC for shielding). The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the defined limit of 1Gy/h in all cases.