ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Paul E. Mariner (SNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 286-293
Humic complexation has the potential to increase actinide mobility and hamper waste isolation in geologic nuclear waste repositories. This study shows that humic complexation of tetravalent actinides (Th(IV), U(IV), Np(IV), and Pu(IV)) has been overestimated in past performance assessments of the Waste Isolation Pilot Plant (WIPP). Major reductions are needed for PHUMSIM and PHUMCIM, the equilibrium concentration ratios of humic-bound aqueous actinide to non-colloidal aqueous actinide. These coefficients are currently set at a value of 6.3 based on Th(IV) measurements in particle size fractions of seawater. Actual humic partitioning is expected to be significantly lower in WIPP brines primarily because pH is higher (~9) and concentrations of competing cations (e.g., Mg2+) are higher. In this work, data from recent studies of Th(IV)-humic, U(IV)-humic, and Ca2+-humic complexation are used to simulate competitive humic complexation under WIPP repository conditions and to estimate new An(IV) PHUMSIM and PHUMCIM values. The new lower coefficients reduce the humic-bound An(IV) concentrations by more than 99%, causing a reduction in total mobile An(IV) concentrations by 85% to 86%, assuming no other type of An(IV) colloid (i.e., intrinsic, microbial, and mineral fragment colloids) is present in significant concentrations.