ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Tae-Joon Kim, Valeriy S. Yugay, Ji-Young Jeong, Jong-Man Kim, Byeung-Ho Kim, Tae-Ho Lee, Yong-Bum Lee, Yeong-Il Kim, Dohee Hahn
Nuclear Technology | Volume 170 | Number 2 | May 2010 | Pages 360-369
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT10-A9489
Articles are hosted by Taylor and Francis Online.
This technical note presents the results of an experimental study of the role of water in sodium leak noise spectrum formation and at various water/steam leak rates of <1.0 g/s. The conditions and ranges for the existence of bubbling and jetting modes in water/steam outflow into circulating sodium through an injector device were determined to simulate a defect in the wall of the heat-transmitting tube of a sodium-water steam generator (SG). Based on experimental leak noise data, the simple dependency of the acoustic signal level on the leak rate of a microleak and small leaks at different frequency bands was presented for the principal analysis to develop an acoustic leak detection methodology for a KALIMER-600, 600-MW(thermal) reactor (K-600) SG, with the operational experiences for noise analysis and measurements of the Bystry neutron (fast neutron) reactor BN-600. Finally, the methodology was tested with the Korea Atomic Energy Research Institute (KAERI) acoustic leak detection system using sodium-water reaction signals of the Institute of Physics and Power Engineering and background noise of the Prototype Fast Reactor (PFR) superheater for methodology development of KAERI, and it was able to detect a leak rate of under 1 g/s and a signal-to-background noise ratio of -22 dB, using this system and methodology.