ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Christophe Journeau, Jean Michel Bonnet, Eric Boccaccio, Pascal Piluso, Jose Monerris, Michel Breton, Gerald Fritz, Tuomo Sevón, Pekka H. Pankakoski, Stefan Holmström, Jouko Virta
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 189-200
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9457
Articles are hosted by Taylor and Francis Online.
This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at the Commissariat à l'Énergie Atomique. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700°C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and [approximately]15 mm in the side wall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests focus on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification.