ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Sang Ji Kim, Yonghee Kim, Sergi Hong, Chung Ho Cho, Jae-Hyuk Eoh, Jong Bum Kim, Myung Hwan Wi, Kwi Seok Ha, Eui Kwang Kim
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 148-158
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Fission Reactors | doi.org/10.13182/NT10-A9453
Articles are hosted by Taylor and Francis Online.
The conceptual design of a 900-MW(thermal) lead-cooled fast reactor (LFR) system for transuranic element (TRU) burning is developed and analyzed using TRU-U-Zr metallic alloy fuel. The design and analysis areas covered are neutronics design, thermal-hydraulic analysis, thermal system design, system mechanical design and analysis, system arrangement, passive decay heat removal system evaluation, and safety analysis for anticipated transient without scram (ATWS) events. Design challenges, solutions, and further research and development items during the conceptual design are described in this paper. Large burnup reactivity swing inherent in the transmutation reactor and irradiation damage to the cladding by high fast neutron fluence are overcome by filling in boron carbide within the tie rods with axial cutbacks. The lead coolant in the reactor pool was estimated to lead to a maximum stress of 125 MPa in the containment vessel. For the long-term cooling behavior upon the concurrent occurrences of a loss of heat sink and a loss of flow, the hot pool temperature is maintained below the design limit of 650°C, which is achieved by an improved decay heat removal design with heat transfer enhancement mechanisms. Analyses of the ATWSs in the investigated core do not reveal any problem from the viewpoints of fuel temperature, cladding temperature, and hot pool temperature. In conclusion, the 900-MW(thermal) LFR system in this study does not pose any significant design-related concerns except for a marginal seismic loading due to the large coolant mass and a verification of the newly introduced design resolutions for long-term decay heat removal.