ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jin Ho Song
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 114-122
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9450
Articles are hosted by Taylor and Francis Online.
An optimal geometrical configuration that results in a maximum loop flow rate at given volume constraints is investigated for a two-phase natural circulation loop and a single-phase natural circulation loop. A rectangular loop connected with pipes is considered, which consists of a heater, a cooler, a riser, and a downcomer. By varying the aspect ratio of the loop, the number of pipes in the heating and cooling sections, and the distribution of the volumes between the cold side and the hot side, an optimal loop configuration that results in a maximum loop flow rate is determined from an analytical solution using simplifying assumptions. It is shown that the optimal configuration is beneficial in terms of minimizing the temperature rise and the pressure rise at given heat input. To support the argument, a complementary numerical analysis for a two-phase natural circulation flow in a rectangular loop is performed. The results are in good agreement with those predicted by the analytical models.