ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Jin Ho Song
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 114-122
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9450
Articles are hosted by Taylor and Francis Online.
An optimal geometrical configuration that results in a maximum loop flow rate at given volume constraints is investigated for a two-phase natural circulation loop and a single-phase natural circulation loop. A rectangular loop connected with pipes is considered, which consists of a heater, a cooler, a riser, and a downcomer. By varying the aspect ratio of the loop, the number of pipes in the heating and cooling sections, and the distribution of the volumes between the cold side and the hot side, an optimal loop configuration that results in a maximum loop flow rate is determined from an analytical solution using simplifying assumptions. It is shown that the optimal configuration is beneficial in terms of minimizing the temperature rise and the pressure rise at given heat input. To support the argument, a complementary numerical analysis for a two-phase natural circulation flow in a rectangular loop is performed. The results are in good agreement with those predicted by the analytical models.