ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Hyun Sik Park, Ki Yong Choi, Seok Cho, Kyoung Ho Kang, Nam Hyun Choi, Dong Jin Euh, Yeon Sik Kim, Won Pil Baek
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 100-113
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9449
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulic integral effect test facility, Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), has been constructed at the Korea Atomic Energy Research Institute. It is a 1/2-reduced-height and 1/288-volume-scaled test facility based on the design features of APR1400, an evolutionary pressurized water reactor developed by the Korean industry. ATLAS was used to perform a set of integral effect tests on the reflood period of a large-break loss-of-coolant accident (LBLOCA) after intensive performance tests had been conducted to verify ATLAS's operational performance and controllability for major thermal-hydraulic components. The present LB-CL-09 test is one of the integral effect reflood tests for investigating the thermal-hydraulic characteristics during an entire reflood period that can be used to provide reliable data to help validate the LBLOCA analysis methodology for APR1400. The main objective of the present test is to identify the major thermal-hydraulic characteristics such as the direct emergency core coolant (ECC) bypass, downcomer boiling, and core cooling behavior during the reflood phase of an LBLOCA for APR1400 under conditions where the downcomer region interacts with the reactor core region and the heat could be transferred through the steam generator. The initial and boundary conditions were obtained by applying scaling ratios to the MARS simulation results. The decay heat and the ECC flow rate from the safety injection tank were simulated from the start of the reflood period. The ECC flow rate from the safety injection pump was 0.32 kg/s. The system pressure was fixed at [approximately]0.1 MPa, and the initial outer-wall temperature was determined to be 205°C. The experimental results showed the typical thermal-hydraulic trends expected to occur during the reflood phase of the LBLOCA scenario.