ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Michael L. Fensin, John S. Hendricks, Samim Anghaie
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 68-79
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Fuel Cycle and Management | doi.org/10.13182/NT10-2
Articles are hosted by Taylor and Francis Online.
Monte Carlo-linked depletion methods have gained recent interest due to the ability to model complex three-dimensional geometries using continuous-energy cross sections. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte Carlo-linked depletion capability in a single Monte Carlo code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross-section data permit. The objective of this work is (a) describe the MCNPX depletion methodology dating from the original linking of MONTEBURNS and MCNP to the first public release of the integrated capability (MCNPX 2.6.B, June 2006) that has been reported previously, (b) further detail the many new depletion capability enhancements since then leading to the present Radiation Safety Information Computational Center (RSICC) release, MCNPX 2.6.0, (c) report calculation results for the H. B. Robinson benchmark, and (d) detail new features available in MCNPX 2.7.A.Each version of MCNPX depletion starting from MCNPX 2.6.A leading to the official RSICC release of MCNPX 2.6.0 and the new beta release MCNPX 2.7.A included significant upgrades that addressed key issues from earlier versions. This paper details these key issues and the approach utilized to address the issues as enhancements for MCNPX 2.6.0. The MCNPX 2.6.0 depletion capability enhancements include (a) allowing the modeling of as large a system as computer memory capacity permits; (b) tracking every fission product available in ENDF/B VII.0; (c) enabling depletion in repeated structures geometries such as repeated arrays of fuel pins; (d) including metastable isotopes in burnup; and (e) manually changing the concentrations of any isotope during any time step by specified atom fraction, weight fraction, atom density, or gram density. These enhancements allow better detail to model the true system physics as well as to improve the robustness of the capability.H. B. Robinson benchmark calculations were completed to assess the validity of nuclide predictability of MCNPX 2.6.0. The results show comparisons of key actinide and fission products as compared to experiment and the SCALE-4 SAS2H sequence 27-group cross-section library (27BURNUPLIB) results. MCNPX 2.6.0 depletion results are within 4% of the experimental results for most major actinides.Two major depletion enhancements are available in the MCNPX 2.7.A beta release: improved 63-group flux querying and parallelization of the burnup interface routines in multiprocessor mode. Fixing the energy group querying routine does correctly tally the energy flux for use with isotopes not containing transport cross sections; however, results show <1% change in nuclide prediction for the benchmark test case. MCNPX 2.7.A parallelizes the depletion interface routines and running of CINDER90 so that different burnable regions of a given depletion system can be preprocessed, burned, and postprocessed on separate slave processors. The parallelization involves minimal communication between processors and therefore leads to significant computational performance enhancement.The combination of new enhancements and testing of the MCNPX 2.6.0 depletion computational system make this capability a valuable Monte Carlo-linked depletion tool. Additional testing and feature enhancements are under development to further improve the usefulness of the computational tool.