ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Shripad T. Revankar, Seungmin Oh, Wenzhong Zhou, Gavin Henderson
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 28-39
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9443
Articles are hosted by Taylor and Francis Online.
A condensation correlation was developed for vapor and air mixture condensation in a vertical tube based on experimental data and a mechanistic model based on heat and mass analogy model. Parametric computations were performed using a heat and mass analogy model for various operating parameters of the passive condenser system. The parameters investigated were noncondensable gas mass fraction Wbulk, mixture gas Reynolds number ReG, and Jacob number JaG. An alternating conditional expectation (ACE) regression algorithm was used to develop the condensation heat transfer correlation for the passive condenser. A total of 102600 data points was used as input to the ACE. Local condensation heat transfer correlations in terms of Nusselt number (Nucond) obtained were: Nucond = 0.08Wbulk-0.9ReG1.1exp(-42.5JaG) for turbulent flow and Nucond = 160Wbulk-0.9exp(-42.5JaG) for laminar flow. The correlations are valid for 0 Wbulk 0.5, 0 ReG 4 × 104 , 0.002 JaG 0.05. The prediction of the developed correlation agreed well with the available experimental data. The correlations are useful in predicting the heat transfer characteristics of a passive containment cooling system (PCCS) in an economic simplified boiling water reactor. These correlations apply to the three modes of PCCS operation, namely through-flow mode, complete condensation mode, and cyclic condensation and venting mode.