ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Shripad T. Revankar, Seungmin Oh, Wenzhong Zhou, Gavin Henderson
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 28-39
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9443
Articles are hosted by Taylor and Francis Online.
A condensation correlation was developed for vapor and air mixture condensation in a vertical tube based on experimental data and a mechanistic model based on heat and mass analogy model. Parametric computations were performed using a heat and mass analogy model for various operating parameters of the passive condenser system. The parameters investigated were noncondensable gas mass fraction Wbulk, mixture gas Reynolds number ReG, and Jacob number JaG. An alternating conditional expectation (ACE) regression algorithm was used to develop the condensation heat transfer correlation for the passive condenser. A total of 102600 data points was used as input to the ACE. Local condensation heat transfer correlations in terms of Nusselt number (Nucond) obtained were: Nucond = 0.08Wbulk-0.9ReG1.1exp(-42.5JaG) for turbulent flow and Nucond = 160Wbulk-0.9exp(-42.5JaG) for laminar flow. The correlations are valid for 0 Wbulk 0.5, 0 ReG 4 × 104 , 0.002 JaG 0.05. The prediction of the developed correlation agreed well with the available experimental data. The correlations are useful in predicting the heat transfer characteristics of a passive containment cooling system (PCCS) in an economic simplified boiling water reactor. These correlations apply to the three modes of PCCS operation, namely through-flow mode, complete condensation mode, and cyclic condensation and venting mode.