ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Leah Spradley, Mark Abkowitz, James H. Clarke
Nuclear Technology | Volume 169 | Number 2 | February 2010 | Pages 180-194
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A9361
Articles are hosted by Taylor and Francis Online.
This paper focuses on how variations in commercial spent nuclear fuel shipment schedules have the potential to impact preclosure operations at the proposed repository for high-level waste at Yucca Mountain (YM) in Nevada. The analysis employs a simulation tool developed by the authors for modeling the packaging and thermal characteristics of the waste stream arriving at Yucca Mountain and is related to a study on the safety of the surface facilities that was also conducted by the authors using the simulation tool. The objective of the research is to gain a better understanding of how waste-stream variations affect surface facility throughput, defined as the rate at which packages are prepared for aging or emplacement in the surface facilities at YM. The basis for and adequacy of the preliminary surface facility throughput requirements are reviewed by evaluating throughput performance subject to various preclosure operating scenarios.Results indicate that under most scenarios, the preliminary design adequately accommodates the mean demand over the operating lifetime for the canister receipt and closure facility (CRCF) and receipt facility (RF) but not the wet handling facility (WHF). While results indicate that WHF demand is likely to be higher than capacity in many scenarios, it seems reasonable that dual-purpose cask and truck deliveries could be deferred to maintain WHF operations at near-capacity levels.Results also show a high potential for variability in annual throughput demand at the CRCF and RF that might result in system backups. In the event of bottlenecks, the facility with less demand can fulfill functional roles of one that is overburdened. The overlap of functional capability in facilities incorporates flexibility into the system. However, since throughput targets are named per facility, as opposed to functions of the system, the design goals of the system as a whole are obscured. An alternative design is proposed that is based on functional goals within the facilities, along with other recommendations.