ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
B. Tóth, A. Bieliauskas, G. Bandini, J. Birchley, H. Wada, J. Hohorst, C. Jamond, K. Trambauer
Nuclear Technology | Volume 169 | Number 2 | February 2010 | Pages 81-96
Technical Paper | Reactor Saftey | doi.org/10.13182/NT10-A9354
Articles are hosted by Taylor and Francis Online.
This paper presents the results of posttest calculations of the phebus FPT2 experiment. While the exercise concentrates mainly on code-to-code benchmarking, a comparison is also made with selected experimental results. The test scenario with the appropriate initial and boundary conditions was provided by the Institut de Radioprotection et de Sûreté Nucléaire. For the analyses, seven severe accident analysis codes were used: ASTEC, ATHLET-CD, MELCOR, ICARE2, ICARE/CATHARE, SCDAP/RELAP5, and RELAP/SCDAPSIM.The calculations focused on the following phenomena occurring in the FPT2 bundle: thermal behavior; hydrogen production, mainly due to cladding oxidation; severe degradation of irradiated fuel; and the release of fission products, control rod, and structure materials.Using the same postdefined boundary and initial conditions, the code-data differences are typically within 10% for most parameters, and not more than 25%. More importantly, the codes were able to capture the major features of the transient evolution. Given that Phebus FPT2 exhibited almost all of the major low-pressure severe accident phenomena except for core cooling by water injection and late-phase core melt behavior in the lower head, the results engender a degree of confidence in the code predictive capability for sequences similar to FPT2.