ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Jamil A. Khan, Travis W. Knight, Sujan B. Pakala, Wei Jiang, Ruixian Fang, James S. Tulenko
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 61-72
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9343
Articles are hosted by Taylor and Francis Online.
The thermal conductivity of the fuel in today's light water reactors, uranium dioxide (UO2), can be improved by incorporating a uniformly distributed heat-conducting network of a higher-conductivity material: silicon carbide (SiC). The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% theoretical density). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and development of a formal methodology for producing the resultant composite oxide fuel. Calculations of the effective thermal conductivity (ETC) of the new fuel as a function of percent SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The ETCs are obtained at different temperatures from 600 to 1600 K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. The heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for the thermal conductivity calculations and to estimate the reduction in centerline temperatures achievable within such a fuel rod. Later, the computer codes COMBINE-PC and VENTURE-PC were employed to estimate the fuel enrichment required to maintain the same burnup levels corresponding to a volume percent addition of SiC.