ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Thomas K. S. Liang, Show-Chyuan Chiang, Chung-Yu Yang, Liang-Che Dai
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 50-60
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9342
Articles are hosted by Taylor and Francis Online.
The limiting blowdown event for the design of an advanced boiling water reactor (ABWR) containment shifts from a conventional recirculation line break to a feedwater line break (FWLB) by implementing reactor internal pumps. As a result, coupled blowdown from both the reactor pressure vessel (RPV) and the balance of plant (BOP) is involved in the limiting FWLB. Coupled blowdown from both RPV and BOP for the FWLB of the Lungmen ABWR has been successfully analyzed using the advanced RELAP5-3D/K code. To simulate adequately both the RPV and BOP blowdown, the essential simulation scope of an ABWR includes the reactor system, the main steam and turbine systems, the condensate and feedwater systems, the protection system, and the emergency core cooling system. As compared to what was presented in the preliminary safety analysis report of the Lungmen ABWR, unexpected prolonged decays of BOP blowdown flow and enthalpy were calculated. The revised blowdown flow and enthalpy calculated by RELAP5-3D/K from both RPV and BOP breaks provide a new and solid basis for the final safety analysis of ABWR containment for the Lungmen plant, which is scheduled for commercial operation in 2011. The successful modeling of the entire RPV and BOP with RELAP5-3D/K and associated application to the FWLB licensing blowdown analysis indicate that the advanced RELAP5 code can extend its traditional reactor safety analysis to the simulation and analysis of the entire power generation and conversion systems.