ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Nathan Lafferty, Victor Ransom, Martin Lopez De Bertodano
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 34-49
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT169-3
Articles are hosted by Taylor and Francis Online.
The capability of RELAP5 to model single- and two-phase acoustic wave propagation is demonstrated with the use of fine temporal and spatial discretizations. Two cases were considered: a single-phase air shock tube problem that was simulated, resulting in a shock wave and a rarefaction wave that lie within 1% error of the analytic solution, and pressure oscillations observed by Takeda and Toda in a two-phase decompression experiment in a pipe under a temperature gradient.Whereas the agreement for the single-phase case is excellent, some discrepancies were observed in the two-phase case:1. Thermal nonequilibrium and the associated delay in the bubble growth were identified as the cause for the dispersion of the rarefaction wave as it becomes trapped inside a two-phase fluid region. The short timescale of the experiment justifies the use of a bubble diameter that is one order of magnitude smaller than the standard RELAP5 predicted bubble diameter, which is calibrated for longer transients.2. The initial depressurization undershoots seen in the Takeda and Toda experiment were overpredicted by the RELAP5 model. Improved agreement with the experiment was obtained by altering the discharge coefficient in the choked flow model to account for uncertainties in the discharge geometry and/or the choked flow model at low pressure.By adjusting these parameters RELAP5 produced markedly better comparisons with the experimental data. These results illustrate two generic shortcomings of nuclear reactor system codes, i.e., the absence of a dynamic model for the interfacial area concentration and uncertainty in two-phase choked flow modeling. However, it is remarkable that RELAP5 could predict the complex dynamics of the two-phase acoustic phenomena in the Takeda and Toda experiment in spite of these shortcomings.