ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Luv Sharma, Tunc Aldemir, Robert Parker
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 18-33
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A9340
Articles are hosted by Taylor and Francis Online.
In the simulation of nuclear plant behavior through system codes, there are often uncertainties associated with the large number of model parameters required as code inputs. The use of the Taguchi method is investigated for the importance ranking of uncertainties when a single metric is used to characterize system performance. The proposed procedure is illustrated on a simplified boiling water reactor (BWR) model to determine the dominant parameters affecting the maximum limit cycle amplitude (MLCA) in BWRs. A reduced-order BWR model is used for the analysis. A regression model is also generated to predict the MLCA as a function of the parameter values in their assumed uncertainty regions. The results indicate that (a) 7 out of the 11 parameters (factors) under consideration have a significant impact on the MLCA, (b) a linear regression model can be constructed to predict the MLCA with 88% confidence, (c) higher-order effects of the control factors are negligible, and, (d) cross effects between the factors are negligible compared to their individual effects. The results also indicate that the use of the Taguchi method leads to a 99.4% reduction in the computational effort over a full factorial experiment design. The use of the Taguchi method is not proposed to replace the well-established conventional methods for sensitivity and uncertainty analysis but rather to assist them in the selection of the parameters that may require more detailed analysis.