ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Luv Sharma, Tunc Aldemir, Robert Parker
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 18-33
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A9340
Articles are hosted by Taylor and Francis Online.
In the simulation of nuclear plant behavior through system codes, there are often uncertainties associated with the large number of model parameters required as code inputs. The use of the Taguchi method is investigated for the importance ranking of uncertainties when a single metric is used to characterize system performance. The proposed procedure is illustrated on a simplified boiling water reactor (BWR) model to determine the dominant parameters affecting the maximum limit cycle amplitude (MLCA) in BWRs. A reduced-order BWR model is used for the analysis. A regression model is also generated to predict the MLCA as a function of the parameter values in their assumed uncertainty regions. The results indicate that (a) 7 out of the 11 parameters (factors) under consideration have a significant impact on the MLCA, (b) a linear regression model can be constructed to predict the MLCA with 88% confidence, (c) higher-order effects of the control factors are negligible, and, (d) cross effects between the factors are negligible compared to their individual effects. The results also indicate that the use of the Taguchi method leads to a 99.4% reduction in the computational effort over a full factorial experiment design. The use of the Taguchi method is not proposed to replace the well-established conventional methods for sensitivity and uncertainty analysis but rather to assist them in the selection of the parameters that may require more detailed analysis.