ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Luv Sharma, Tunc Aldemir, Robert Parker
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 18-33
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A9340
Articles are hosted by Taylor and Francis Online.
In the simulation of nuclear plant behavior through system codes, there are often uncertainties associated with the large number of model parameters required as code inputs. The use of the Taguchi method is investigated for the importance ranking of uncertainties when a single metric is used to characterize system performance. The proposed procedure is illustrated on a simplified boiling water reactor (BWR) model to determine the dominant parameters affecting the maximum limit cycle amplitude (MLCA) in BWRs. A reduced-order BWR model is used for the analysis. A regression model is also generated to predict the MLCA as a function of the parameter values in their assumed uncertainty regions. The results indicate that (a) 7 out of the 11 parameters (factors) under consideration have a significant impact on the MLCA, (b) a linear regression model can be constructed to predict the MLCA with 88% confidence, (c) higher-order effects of the control factors are negligible, and, (d) cross effects between the factors are negligible compared to their individual effects. The results also indicate that the use of the Taguchi method leads to a 99.4% reduction in the computational effort over a full factorial experiment design. The use of the Taguchi method is not proposed to replace the well-established conventional methods for sensitivity and uncertainty analysis but rather to assist them in the selection of the parameters that may require more detailed analysis.