ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Charles T. Kelsey IV, Guenter Muhrer, Eric J. Pitcher
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 957-964
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Materials for Nuclear Systems | doi.org/10.13182/NT09-A9333
Articles are hosted by Taylor and Francis Online.
Radionuclide inventory calculations support design and accident analyses for the Materials Test Station (MTS). MTS is a spallation source facility being designed to irradiate reactor fuels and materials in a fast neutron spectrum. Calculated radionuclide inventories are used to provide decay heat input to cooling system design, decay radiation source terms for hot cell design, and material-at-risk input to accident analyses. CINDER'90 is a transmutation code that uses MCNPX-calculated spallation product yields and neutron fluxes to calculate residual nuclide concentrations based on irradiation history. The code also calculates decay heat and photon spectra for the resulting radionuclide inventories. A total activity of 2 × 1017 Bq is created during MTS operation. Decay heat is an important factor since in loss of primary cooling scenarios, this heat must be removed. The major sources at shutdown are 3000 W for the tungsten target plates and 6000 W for fuel pins being irradiated. Decay photon spectra result in unshielded dose rates that hot cell design must accommodate on the order of 1000 Sv/h. The MTS design includes lead-bismuth eutectic (LBE) coolant. For accident analysis 210Po activity in the LBE is a significant concern. The calculated 210Po activity following 2.5 yr of operation is 2 × 1014 Bq. Radionuclide inventory calculations are important for MTS design. The CINDER'90 code is a valuable tool for this purpose.