ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
N. Prolingheuer, M. Herbst, B. Heuel-Fabianek, R. Moormann, R. Nabbi, B. Schlögl, J. Vanderborght
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 924-930
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9328
Articles are hosted by Taylor and Francis Online.
At sites with powerful particle accelerators, the problem of groundwater activation by direct neutron radiation arises. Licensing of particle accelerators requires evidence that groundwater activation is within the legal limits and thus will not endanger workers, the public, or the environment.In this study we focus on the following radionuclides: 14C, 41Ca, 45Ca, 36Cl, 55Co, 57Co, 60Co, 3H, 54Mn, 24Na, 32P, 35S, 32Si, and 50V. The conventional approach for calculating activation of soil and groundwater is described and utilized for a fictive 5-MW proton accelerator at Jülich, Germany, with a beam loss of 1 Wm-1. An updated overview of partition coefficients for relevant radionuclides in sand, clay, loam, and organic soils is presented. Based on the two aforementioned methods, groundwater activation is estimated with a simplified homogeneous groundwater transport model. The results indicate 3H, 14C, and 36Cl as the most relevant radionuclides concerning the resultant activity concentrations and estimated dose rates at the site boundary. For this fictive test case, the site boundary is located a distance 250 m downstream of the accelerator, which leads to acceptable risk for the public, given the legal standards.