ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
C. Carrapiço, E. Berthoumieux, I. F. Gonçalves, F. Gunsing, A. Mengoni, P. Vaz, V. Vlachoudis, The n_TOF Collaboration
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 837-842
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9315
Articles are hosted by Taylor and Francis Online.
The n_TOF facility is a time-of-flight (TOF) spectrometer dedicated to studying neutron-induced reactions, mainly neutron capture and fission cross sections. The spectrometer consists of a pulsed proton beam (7 × 1012 protons/pulse, 6-ns width, 20 GeV/c) impinging on an 80 × 80 × 60 cm3 lead target. The neutrons produced by spallation reactions reach the detector station at 185 m through an evacuated tube. There, neutron-induced reactions are studied by using the TOF technique. The facility is unique for its high instantaneous neutron flux (of the order 106 neutrons/cm2 per proton pulse at 185 m), an excellent energy resolution, low background conditions, and a very low duty cycle. This combination allows one to measure neutron capture and fission cross sections in the energy range from 1 eV to 250 MeV with high precision.For the analysis of the data in the resolved resonance region up 1 MeV, a precise and accurate knowledge of the distribution of the energy resolution is mandatory. The only way to obtain the resolution function in a detailed way is to use Monte Carlo simulations together with the experimental verification with well-known resonance reactions at selected energies. Such calculations and an analytical fit of the results have been performed for the target setup of the first phase of data taking.Monte Carlo simulations performed for the assessment and comparison of the resolution function for different target configurations are reported. The different resolution functions are compared and discussed.