ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Eric Dumonteil
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 793-798
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9308
Articles are hosted by Taylor and Francis Online.
Various variance-reduction techniques are used in Monte Carlo particle transport. Most of them rely either on a hypothesis made by the user (parameters of the exponential biasing, mesh and weight bounds for weight windows, etc.) or on a previous calculation of the system with, for example, a deterministic solver. This paper deals with a new acceleration technique, namely, autoadaptative neural network biasing. Indeed, instead of using any a priori knowledge of the system, it is possible, at a given point in a simulation, to use the Monte Carlo histories previously simulated to train a neural network, which, in return, should be able to provide an estimation of the adjoint flux, used then for biasing the simulation. We will describe this method, detail its implementation in the Monte Carlo code Tripoli4, and discuss its results on two test cases.