ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
T. E. Booth, K. C. Kelley, S. S. McCready
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 765-767
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9303
Articles are hosted by Taylor and Francis Online.
Dxtran is a deterministic transport method typically used for increasing the sampling in a spherical region that would otherwise not be adequately sampled because the probability of scattering toward the region is often very small. Essentially, the dxtran method splits the particle into two pieces at each source or collision point: a piece that arrives (without further collisions) at the dxtran sphere and a piece that does not. One difficulty with the dxtran method is that it can introduce a large weight fluctuation between particles colliding just before the sphere and particles colliding after crossing the sphere. New work shows that it is possible to mitigate this difficulty by extending the dxtran sphere concept to a set of nested dxtran spheres. Each dxtran sphere then shields its interior from particles whose weights are too large so that weights are more commensurate with their locations. Shielding against the large weights not only increases the efficiency of the calculation but the reliability as well. The effectiveness of the technique in MCNP was demonstrated on a 1-km air transport problem and on a concrete duct problem.