ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
M. Brugger, P. Cennini, A. Ferrari, E. Lebbos, V. Vlachoudis
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 752-757
Heavy Ion Transport | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9301
Articles are hosted by Taylor and Francis Online.
The n_TOF facility, a spallation neutron source, uses a pure lead target to produce neutrons with a 20-GeV proton beam extracted from the CERN Proton Synchrotron. After 4 yr of operation and [approximately]3 yr of cooling, the present spallation target is damaged and was moved to its provisional storage place in the n_TOF service gallery and will be later transferred to a Swiss repository. In this study, to deal with the removal and storage of the lead target, detailed isotope production and residual dose rate calculations were performed with the FLUKA Monte Carlo code. The study further includes a detailed analysis of three-dimensional residual dose rate fields around the target and through the installation pit. It addresses critical design parameters for the new target and successfully compares the simulation results to recently available measurement data. FLUKA allows residual dose rates to be calculated using two different approaches: a one-step approach that simultaneously takes into account production and decay (built-in) and a two-step approach that allows for flexible geometries between the isotope production and sampling of the decay products (customized). This work shows the clear advantage of performing Monte Carlo calculations prior to interventions and waste disposal and the importance of a detailed description of all the installation components, a complete chemical composition inventory, and a correct irradiation profile.