ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Ivan Strasik, Ekaterina Kozlova, Edil Mustafin, Ingo Hofmann, Andrey Smolyakov, Nikolai Sobolevsky, Ludmila Latysheva, Marius Pavlovic
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 643-647
Accelerators | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9282
Articles are hosted by Taylor and Francis Online.
Quantification of residual activity is an important issue for high-power accelerator facilities like the Facility for Antiprotons and Ion Research (FAIR). While beam losses of 1 W/m are at present accepted for proton machines as a tolerable level for ensuring "hands-on" maintenance, the beam-loss tolerances for high-energy heavy-ion accelerators have not yet been quantified. The Monte Carlo particle transport codes FLUKA and SHIELD were used to simulate the irradiation of copper and stainless steel by different ions (1H, 4He, 12C, 20Ne, 40Ar, 84Kr, 132Xe, 197Au, and 238U) with energies typical for FAIR machines. Copper and stainless steel were chosen as common materials for accelerator structures. The isotope inventory contributing >90% to the total residual activity does not depend on the projectile species; it depends only on the target material and projectile energy. The activity per watt induced by a 1 GeV/u heavy ion is lower than the activity per watt induced by a 1-GeV proton. A tolerable beam-loss level for a 1 GeV/u 238U beam was found to be [approximately]5 W/m.