ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
H. Nakashima, Y. Sakamoto, Y. Iwamoto, N. Matsuda, Y. Kasugai, Y. Nakane, F. Masukawa, N. V. Mokhov, A. F. Leveling, D. J. Boehnlein, K. Vaziri, T. Sanami, H. Matsumura, M. Hagiwara, H. Iwase, N. Kinoshita, H. Hirayama, K. Oishi, T. Nakamura, H. Arakawa, N. Shigyo, K. Ishibashi, H. Yashima, N. Nakao, K. Niita
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 482-486
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9229
Articles are hosted by Taylor and Francis Online.
Experimental studies of shielding and radiation effects are carried out at Fermi National Accelerator Laboratory (FNAL) under collaboration between FNAL and Japan, aiming at benchmarking simulation codes and studying irradiation effects for the upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (a) acquisition of shielding data in a proton beam energy region above 100 GeV, (b) further evaluation of predictive accuracy of the PHITS and MARS codes, (c) modification of physics models and data in these codes if needed, (d) characterization of radiation fields for studies of radiation effects, and (e) development of a code module for an improved description of radiation effects.The first campaign of the experiment was carried out at the Pbar target station and NuMI experimental station at FNAL, which use irradiation of targets with 120-GeV protons for antiproton and neutrino production, respectively. The generated secondary particles passing through steel, concrete, and rock were measured by activation methods as well as by other detectors such as a scintillator with a veto counter, phoswich detector, and a Bonner ball counter on trial. Preliminary experimental and calculated results are presented.