ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Hesham Khater, Sandra Brereton, Mike Singh
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 381-386
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9213
Articles are hosted by Taylor and Francis Online.
Prompt doses from X-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility. The maximum dose outside a target chamber diagnostic port is [approximately]10 mSv for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (eight laser beams) drops to [approximately]0.4 mSv. Doses calculated outside the target bay (TB) doors and inside the switchyards (SYs) [except for the 5.33-m (17-ft 6-in.) floor level] range from a few microsieverts to [approximately]110 Sv for 192 beams and scale down proportionally with a smaller number of beams. At the 5.33-m (17-ft 6-in.) floor level, two diagnostic ports are directly facing two of the TB doors, and the maximum doses outside the doors are 0.5 and 0.16 mSv, respectively. Shielding each of the two TB doors with 6.35-mm-thick Pb (¼-in.) reduces the dose by a factor of 50. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the SYs.