ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Marcos P. de Abreu
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 369-372
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9211
Articles are hosted by Taylor and Francis Online.
In this technical note we report on a slight but important modification in a recently developed backscattered neutron-based void fraction evaluation scheme for slab materials, and we describe an add-on numerical scheme for computing total (direct plus diffuse) neutron transmission through a test slab. In the void fraction evaluation scheme, the broad neutron beam consists of a monodirectional (singular), normally incident component and a smooth (regular), angularly continuous component, i.e., a mixed neutron beam. Once the void fraction of the test slab has been evaluated, the diffuse component of the angular flux of transmitted neutrons can be computed from an accurate spherical harmonics-discrete ordinates solution of the neutron beam transport problem defined in a reduced slab domain (the direct component is rather straightforward to compute). The add-on scheme described here can be used to evaluate the amount of neutrons that escape from the slab through the back side. Numerical results are given to illustrate the usefulness of our add-on scheme in neutron shielding studies.