ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Gabriel Ghita, Glenn Sjoden, James Baciak
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 310-316
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9200
Articles are hosted by Taylor and Francis Online.
We propose here a unique, patented shield design that transforms the complex neutron spectrum from a plutonium-beryllium (PuBe) neutron source to nearly the precise neutron signature leaking from a sphere of weapons-grade plutonium (WGPu) material. This will facilitate testing for detection of a significant quantity of weapons plutonium without the expense or risk of testing detector components with real materials. The Monte Carlo (MCNP5) and Deterministic (PENTRAN) computational codes have been used in developing the shield assembly. A nickel composite alloy shield for a PuBe capsule has been designed, built, and laboratory-tested to enable the neutron leakage spectrum from a standard 1-Ci PuBe source (mean energy of 4.6 MeV) to be transformed, through interactions in the shield, into a very close reproduction of the neutron spectrum leaking from a large, subcritical mass of WGPu metal (average neutron energy of 2.1 MeV). Nearly all current calibrations of neutron detectors use 252Cf for generation of a fission neutron spectrum, which decays with a half-life of [approximately]2.7 yr and is very expensive to procure. By converting to this design, PuBe sources relying on 239Pu (T1/2 = 24110 yr) and lasting hundreds of years could then be used to precisely calibrate and test detectors for simulated WGPu neutrons. Alternative custom designs are also possible with further transport-based modeling.