ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
T. F. Nichols, L. W. Townsend, J. W. Hines
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 178-181
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9122
Articles are hosted by Taylor and Francis Online.
The dose from solar particle events (SPEs) poses a serious threat to the health of astronauts. A method for forecasting the rate and total severity of such events would give time for the astronauts to take actions to mitigate the effects from an SPE. The danger posed from an SPE depends both on the total dose received and the temporal profile of the event. The temporal profile describes how quickly the dose will arrive. Previously developed methods used neural networks to predict the total dose from an event. Later, the ability to predict the temporal profiles was added to the neural network approach. Localized weighted regression (LWR) was then used to determine if better fits with less computer load could be accomplished. Previously, LWR was shown to be able to predict the total dose from an event. LWR is the model being used to forecast the dose and the temporal profile from an SPE. LWR is a nonparametric memory-based technique; it compares a new query to stored sets of exemplar data to make its predictions. It is able to forecast early in an SPE the dose and dose rate for the event. For many events the total dose is predicted within a factor of 2 within 20 min of the beginning of the event. SPEs that are within the training parameters have temporal predictions within a few hours of the start of the event. Using an LWR model, forecasts of the dose and dose rate can be made a few hours after the start of the event. The model is able to forecast most types of events within [approximately]10% accuracy. However, there are a few events that the model fails to forecast accurately.