ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Jonas D. Fontenot, Phillip Taddei, Yuanshui Zheng, Dragan Mirkovic, Wayne D. Newhauser
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 173-177
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9121
Articles are hosted by Taylor and Francis Online.
The purpose of this study was to evaluate the suitability of the quantity ambient dose equivalent H*(10) as a conservative estimate of effective dose E for estimating stray radiation exposures to patients receiving passively scattered proton radiotherapy for cancer of the prostate. H*(10), which is determined from fluence free-in-air, is potentially useful because it is simpler to measure or calculate because it avoids the complexities associated with phantoms or patient anatomy. However, the suitability of H*(10) as a surrogate for E has not been demonstrated for exposures to high-energy neutrons emanating from radiation treatments with proton beams. The suitability was tested by calculating H*(10) and E for a proton treatment using a Monte Carlo model of a double-scattering treatment machine and a computerized anthropomorphic phantom. The calculated E for the simulated treatment was 5.5 mSv/Gy, while the calculated H*(10) at the isocenter was 10 mSv/Gy. A sensitivity analysis revealed that H*(10) conservatively estimated E for the interval of treatment parameters common in proton therapy for prostate cancer. However, sensitivity analysis of a broader interval of parameters suggested that H*(10) may underestimate E for treatments of other sites, particularly those that require large field sizes. Simulations revealed that while E was predominated by neutrons generated in the nozzle, neutrons produced in the patient contributed up to 40% to dose equivalent in near-field organs.