ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Sarah Scarboro, Nolan Hertel, Eric Burgett, Rebecca Howell, Armin Ansari
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 169-172
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9120
Articles are hosted by Taylor and Francis Online.
In the event of a terrorist act involving a radiological agent, internal contamination due to inhalation is a potential health threat. When a large population is potentially impacted, there is need for methodology to serve as an initial screening or triage tool to rapidly identify individuals with significant amounts of internal contamination and to assist in prioritizing collection of large numbers of bioassay samples needed in such an incident. Common handheld radiation detectors and medical devices are tools that can effectively and rapidly screen a large number of people for internal contamination due to gamma-emitting isotopes. This work investigated the use of a common medical device, a thyroid uptake system or thyroid probe, in screening for internal contamination in individuals. The response of a thyroid uptake system in such a situation can be estimated by using a validated Monte Carlo model of the thyroid uptake system and various human phantoms. A computational model of the thyroid uptake system was built using the Los Alamos Particle Transport Code, MCNP Version 5. The validation of this computational model was demonstrated by comparisons to a series of benchmark measurements using the actual device and six isotopes with a range of gamma-ray emission energies.