ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Z. W. Lin
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 128-131
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9112
Articles are hosted by Taylor and Francis Online.
In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFOs), the eye, or the skin. Sometimes, an equivalent sphere is used to represent the organ for a fast estimate of the organ dose. It has been found that the equivalent sphere model (ESM) can approximate organ dose or dose equivalent values in galactic cosmic-ray environments. In solar particle event (SPE) environments, the model works marginally for BFOs, but it does not work for the eye or the skin. Here, we study the improvement of the ESM. Motivated by the two-component thickness distributions of the eye and the skin, we use two spheres with proper weights to represent the eye or the skin, and this drastically improves the accuracy. For example, in SPE environments, the average error for the skin dose equivalent using two spheres to represent the skin is [approximately]8%, while the average error using a single sphere is [approximately]100%.