ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jeng-Ning Wang, Chung-Hsin Lu, Kuo-Wei Lee, Uei-Tyng Lin, Shiang-Huei Jiang
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 101-107
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9107
Articles are hosted by Taylor and Francis Online.
The site dose rate of a spent-fuel storage facility to the populace is a major concern in a radiation protection project. Shielding analysis of the facility must be performed to ensure that the nearby dose rates are within regulation limitations. The purpose of this study was to simulate an independent spent-fuel storage installation (ISFSI) storage facility with different methods and different conditions for validation and analysis. The discrete ordinates code DORT and the SKYSHINE III code were used for the cask surface flux estimation and the site dose rate calculation, respectively. The Monte Carlo code MCNP was also utilized to estimate the surface dose rate and site dose rate by its subsequent calculation. Various cask decay heats (23, 14, and 7 kW/cask) were considered as the source conditions. A facility layout composed of 30 casks was also simulated by the MCNP code and analyzed for the cask self-shielding effect to a certain detecting point. For a single storage cask, comparisons of the site dose rates calculated by different methods were carried out at variant distances. For the layout simulation, the calculated results indicated that the self-shielding effect could be roughly classified into several groups according to the location of the storage cask, and a factor could be assigned to each group. These classified factors might help to infer the site dose in variant layout designs. The site dose rates calculated by different codes were compared for the whole facility, too. In spite of the similar dose rates on the cask surface, the difference of site dose rates changes with decay heat. The layout study of the ISFSI facility could offer information to make the site dose estimation more efficient as many layout assessments are needed.