ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
R. Vilim, R. Klann
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 61-73
Detectors | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT168-61
Articles are hosted by Taylor and Francis Online.
Within the homeland security and emergency response communities, there is a need for a low-profile system to detect and locate radioactive sources. RadTrac has been developed at Argonne National Laboratory as an integrated system for the detection, localization, identification, and tracking of radioactive sources in real time. The system is based on a network of radiation detectors and advanced signal-processing algorithms. Features include video surveillance, automated tracking, easy setup, and logging of all data and images.This paper describes the advanced algorithms that were developed and implemented for source detection, localization, and tracking in real time. In the physio-spatial integration approach to source localization, counts from multiple detectors are processed according to the underlying physics linking these counts to obtain the probability that a source is present at any point in space. This information is depicted in a probability density function map. This type of depiction allows the results to be presented in a simple, easy-to-understand manner. It also allows for many different complicated factors to be accounted for in a single image as each factor is computed as a probability density in space. These factors include spatial limitations, variable shielding, directional detectors, moving detectors, and different detector sizes and orientations. The utility and versatility of this approach is described in further detail. Advanced signal-processing algorithms have also been incorporated to improve real-time tracking and to increase signal-to-noise ratios including temporal linking and energy binning.Measurements aimed at demonstrating the sensitivity improvements through the use of advanced signal-processing techniques were performed and are presented. Results of tracking weak sources (<100 Ci 137Cs) using four fixed-position detectors are presented.