ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
N. R. Chalasani, Pablo E. Araya, Miles Greiner
Nuclear Technology | Volume 167 | Number 3 | September 2009 | Pages 371-383
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT167-371
Articles are hosted by Taylor and Francis Online.
Experiments and computational fluid dynamics/radiation heat transfer simulations of an 8 × 8 array of heated rods within an air-filled aluminum enclosure are performed. This configuration represents a region inside the channel of a boiling water reactor fuel assembly between two consecutive spacer plates. The rods are oriented horizontally or vertically to represent transport or storage conditions. The measured and simulated rod temperatures are compared for three different rod heat generation rates to assess the accuracy of the simulation technique. Simulations show that temperature gradients in the air are much steeper near the enclosure walls than they are near the center of the rod array. The measured temperatures of rods at symmetric locations are not identical, and the difference is larger for rods close to the wall than for those far from it. Small but uncontrolled deviations of the rod positions away from the design locations may cause these differences. The simulations reproduce the measured temperature profiles. For a total rod heat generation rate of 300 W, the maximum rod-to-enclosure temperature difference is 150°C. Linear regression shows that the simulations slightly but systematically overpredict the hotter rod temperatures but underpredict the cooler ones. For all rod locations, heat generation rates, and rod orientations, 95% of the simulated temperatures are within 11°C of the correlation values. For the hottest rods, which reside in the center of the domain where the air temperature gradients are small, 95% of the simulated temperatures are within 4.3°C of the correlation values. These results can be used to assess the accuracy of using simulations to design spent nuclear fuel transport and storage systems.