ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Koichi Asakura, Kentaro Takeuchi, Takayoshi Makino, Yoshiyuki Kato
Nuclear Technology | Volume 167 | Number 3 | September 2009 | Pages 348-361
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT09-A9075
Articles are hosted by Taylor and Francis Online.
Technological feasibility of a simplified mixed-oxide (MOX) pellet fabrication process, the short process, was studied. About 300 g of microwave heating denitrated (MH)-MOX powder with adjusted plutonium content to 30% could be successfully processed by a tumbling granulator for subsequent pelletizing and sintering processes. The granulated 30%PuO2-MOX powder could be pressed into green annular pellets directly and smoothly when using a die wall lubrication method. The pellet tensile strengths were compared for a granulated molybdenum powder that has similar characteristics to those of granulated 30%PuO2-MOX powder, and they were higher for pellets obtained when using the die wall lubrication method than when using the conventional powder mixing method. The amount of additives in the green pellets could be controlled at a low value of 0.06 wt% in this process. It is, therefore, possible to carry out dewaxing and sintering of green pellets in the same furnace. By controlling the average particle sizes of granulated 30%PuO2-MOX powders, pellets with more than 95% theoretical density could be obtained after sintering at 1700°C for 2 h.As a result, it can be concluded that the short process is technologically feasible to fabricate MOX annular pellets.