ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Georgeta Radulescu, Donald E. Mueller, John C. Wagner
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 268-287
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT09-A8963
Articles are hosted by Taylor and Francis Online.
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified. The study employed cross-section sensitivity and uncertainty analysis methods developed at Oak Ridge National Laboratory and the TSUNAMI set of tools in the SCALE code system as a means to investigate neutronic similarity on an integral and nuclide-reaction-specific level. The results indicate that except for the fresh-fuel-core configuration, all analyzed CRC state-points are either highly similar, similar, or marginally similar to the representative high-capacity cask containing spent nuclear fuel assemblies with burnups ranging from 10 to 60 GWd/tU in terms of their shared uncertainty in keff due to cross-section uncertainties. On a nuclide-reaction-specific level, the CRC state-points provide significant coverage, in terms of neutronic similarity, for most of the actinides and fission products relevant to burnup credit. Hence, in principle, the evaluated CRC state-points could serve as part of a set of benchmark experiments for determining a bias and bias uncertainty to be applied to the calculated keff of a spent fuel transport/storage/disposal system to correct for approximations in computational methods and errors and uncertainties in nuclear data. Note, however, that an evaluation to quantify the uncertainties associated with various CRC modeling parameters (e.g., fuel isotopic compositions, physical characteristics of reactor core components, and reactor operating history information), which has relevance to the use of these critical configurations for bias determination, was not performed as part of this study.