ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Hidehito Kinjo, Takeshi Kageyama, Akihiro Kitano, Shin Usami
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 254-267
Technical Paper | Fission Reactors | doi.org/10.13182/NT09-A8962
Articles are hosted by Taylor and Francis Online.
A conceptual design study has been performed on upgrading the core performance of the Japanese fast breeder reactor (FBR) Monju. The main aim of this study is to investigate and demonstrate the feasibility of an upgraded core with an extended refueling interval of 365 equivalent full-power days and increased average fuel burnup of 150 GWd/t, which are expected in future commercial FBRs.Two main design measures have been taken to accommodate the largely increased burnup reactivity loss and the reactivity control characteristics for the 1-yr cycle operation: (a) A modified fuel pin specification with increased pin diameter, pellet density, and fissile height has been chosen to improve the burnup reactivity loss per extended cycle, and (b) the control rod specification has been modified to enhance the reactivity worth by increasing the 10B content to ensure sufficient shutdown margin.The major core characteristics that have been evaluated are the core power distribution, safety-related reactivities such as Doppler and sodium void effect, thermal hydraulics, and reactivity control characteristics. The results show that even a medium-sized upgraded core with a volume of [approximately]2.5 m3 could achieve the primary targeted performance of 1-yr cycle operation, without causing significant drawbacks to the core characteristics and safety aspects. The feasibility of the upgraded core concept has thus been demonstrated.