ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Patrick Drai, Olivier Marchand, Patrick Chatelard, Florian Fichot, Joëlle Fleurot
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 235-246
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8865
Articles are hosted by Taylor and Francis Online.
In order to analyze the course of a hypothetical severe accident, the French "Institut de Radioprotection et de Sûreté Nucléaire" in the last decade has developed computer codes that have been extensively used for supporting the Level 2 Probabilistic Safety Assessment (PSA2) and, in general, for the safety analysis of French pressurized water reactors (PWRs).In particular, the computer code ICARE/CATHARE V1 is a tool that has been widely validated and intensively used within the framework of the PSA2 of the 900-MW(electric) French PWR. This code has been tested on many accident scenarios, and the results obtained have been considered to be satisfactory and reliable up to the end of the early degradation phase. But, severe accidents in PWRs are characterized by a continuous evolution of the core geometry due to chemical reactions, melting, and mechanical failure of the rods and other structures. These local variations of the porosity and other parameters lead to multidimensional flows and heat transfers. So, the lack of a multidimensional two-phase thermal-hydraulic model appeared to be prejudicial to achieve best-estimate reactor studies with ICARE/CATHARE V1 in the case of large core blockages and/or in the case of large cavity appearance. In accordance, a full multidimensional modeling (covering both the fluid flow and the corium behavior) was developed and introduced in a new ICARE/CATHARE version referenced as V2, which includes two options for the thermal-hydraulic modeling: either one-dimensional (1D) or two-dimensional (2D).The first part of this paper demonstrates that without activating the new V2 models, ICARE/CATHARE V2(1D) is able to reproduce the results obtained with ICARE/CATHARE V1 on the basis of a 6-in.-break loss-of-coolant accident. Then, in order to illustrate some of the new V2 modeling improvements, the last part is focused on the results obtained with ICARE/CATHARE V2(2D), and a preliminary comparison is made with ICARE/CATHARE V2(1D).This 1D-2D comparison points out in particular the important role that could be played in the course of a severe accident by the multidimensional flow pattern.