ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Report: New recommendations for nuclear waste
Today, a bipartisan group of experts including energy consultant Lake Barrett and former NRC chair Allison Macfarlane have published a report titled The Path Forward for Nuclear Waste in the U.S.
The report recommends a new solution for managing domestic nuclear waste—one that centers around the foundation of an independent corporation led by reactor owners. Responsibility for waste management transport, storage, and disposal would be managed by this corporation rather than the Department of Energy.
Chang H. Oh, Goon C. Park, Cliff Davis
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 107-117
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8855
Articles are hosted by Taylor and Francis Online.
An air-cooled helical coil reactor cavity cooling system (RCCS) unit immersed in the water pool was proposed to overcome the disadvantages of the weak cooling ability of an air-cooled RCCS and the complex structure of a water-cooled RCCS for the high-temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool-type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool, and the forced convection of air in the cooling pipe.The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.