ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Nicholas R. Brown, Seungmin Oh, Shripad T. Revankar, Karen Vierow, Salvador Rodriguez, Randall Cole, Jr., Randall Gauntt
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 95-106
Technical Paper | NURETH-12 / Fuel Cycle and Management | doi.org/10.13182/NT09-A8854
Articles are hosted by Taylor and Francis Online.
The sulfur-iodine (SI) cycle is one of the leading candidates in thermochemical processes for hydrogen production. In this paper a simplified model for the SI cycle is developed with chemical kinetics models of the three main SI reactions: the Bunsen reaction, sulfuric acid decomposition, and hydriodic acid decomposition. Each reaction was modeled with a single control volume reaction chamber. The simplified model uses basic heat and mass balance for each of the main three reactions. For sulfuric acid decomposition and hydriodic acid decomposition, reaction heat, latent heat, and sensible heat were considered. Since the Bunsen reaction is exothermic and its overall energy contribution is small, its heat energy is neglected. However, the input and output streams from the Bunsen reaction are accounted for in balancing the total stream mass flow rates from the SI cycle. The heat transfer between the reactor coolant (in this case helium) and the chemical reaction chamber was modeled with transient energy balance equations. The steady-state and transient behavior of the coupled system is studied with the model, and the results of the study are presented. It was determined from the study that the hydriodic acid decomposition step is the rate-limiting step of the entire SI cycle.