ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Justin D. Talley, Seungjin Kim, Tangwen Guo, Gunol Kojasoy
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 2-12
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT167-2
Articles are hosted by Taylor and Francis Online.
The present study investigates the geometric effects of a 45-deg elbow on the development and distribution of local two-phase flow parameters in horizontal bubbly flow. A round pipe with an inner diameter of 50.3 mm is used as a test section throughout the study. The test section consists of a 90-deg elbow followed farther downstream by a 45-deg elbow. Local two-phase flow parameters and pressure measurements are made at three different axial locations, one upstream and two downstream of the 45-deg elbow. In total, 15 different flow conditions are investigated for the present analysis. At the measurement port just downstream of the 45-deg elbow, the local parameters are acquired in both the vertical and horizontal directions along the radius of the pipe cross section to capture geometric effects of the flow restriction. The local two-phase flow parameters acquired in the present study include void fraction, bubble velocity, interfacial area concentration, and Sauter mean diameter. In view of one-dimensional transport, the local void fraction and interfacial area concentration are area averaged and plotted along the axial direction. The characteristic geometric effects of the flow restrictions are clearly demonstrated in the distribution of the two-phase flow parameters and pressure, as well as their development along the flow direction. The drastic changes in the interfacial area concentration across the elbow suggest that a 45-deg elbow induces significant changes in bubble interaction mechanisms.