ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Z. W. Lin
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 273-282
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT09-A8841
Articles are hosted by Taylor and Francis Online.
In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFOs), the eye, or the skin. It has been customary to use a 5-cm equivalent sphere to approximate the BFO dose. However, previous studies have shown that a 5-cm sphere gives conservative dose values for BFOs. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent-sphere model (ESM) can approximate organ doses in space radiation environments. We have determined the organ-specific constant radius parameters and the corresponding average errors of using the ESM at those radius parameters. We find that for galactic cosmic ray (GCR) environments, the ESM with a constant radius parameter works well in estimating the dose and dose equivalent in BFOs, the eye, or the skin, and the average errors of using the ESM are all <2%. For solar particle event (SPE) environments, however, the radius parameters for organ dose or dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFOs but is unacceptable for the eye or the skin. To estimate the dose equivalent in BFOs, for example, the constant radius parameter is determined to be ~10.5 cm for GCR environments and ~7.8 cm for SPE environments, and the corresponding average error of using these radius parameters in the ESM is 0.7% and 17%, respectively.