ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Z. W. Lin
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 273-282
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT09-A8841
Articles are hosted by Taylor and Francis Online.
In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFOs), the eye, or the skin. It has been customary to use a 5-cm equivalent sphere to approximate the BFO dose. However, previous studies have shown that a 5-cm sphere gives conservative dose values for BFOs. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent-sphere model (ESM) can approximate organ doses in space radiation environments. We have determined the organ-specific constant radius parameters and the corresponding average errors of using the ESM at those radius parameters. We find that for galactic cosmic ray (GCR) environments, the ESM with a constant radius parameter works well in estimating the dose and dose equivalent in BFOs, the eye, or the skin, and the average errors of using the ESM are all <2%. For solar particle event (SPE) environments, however, the radius parameters for organ dose or dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFOs but is unacceptable for the eye or the skin. To estimate the dose equivalent in BFOs, for example, the constant radius parameter is determined to be ~10.5 cm for GCR environments and ~7.8 cm for SPE environments, and the corresponding average error of using these radius parameters in the ESM is 0.7% and 17%, respectively.