ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
S. X. Li, D. Vaden, B. R. Westphal, G. L. Frederickson, R. W. Benedict, T. A. Johnson
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 180-186
Technical Papers | Reprocessing | doi.org/10.13182/NT09-A7404
Articles are hosted by Taylor and Francis Online.
An engineering-scale pyroprocessing integrated efficiency test was conducted with sodium-bonded, spent Experimental Breeder Reactor II drive fuel elements. The major pieces of equipment used to conduct the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four batches of the spent fuel (containing 50.4-kg heavy metal) were processed under a set of fixed operating parameters. The primary goal of the test was to demonstrate the actinide dissolution and recovery efficiencies typical of the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. The total mass balance for the test was 101.28% (slightly more output than input). The uranium mass balance for the test was 100.13%. The test results indicate that 99.3 wt% of uranium in the feed was electrochemically dissolved and 98.4 wt% of the uranium was collected as metal ingots. The complexity of zirconium behavior during electrorefining was confirmed by the test results. More than 85 wt% of the zirconium was electrochemically dissolved during the later stages of the electrorefining process. However, only 33.7 wt% of the zirconium was collected as metal in the ingots. The balance of the zirconium is believed to reside in the cadmium pool. The test also identified that the dross streams from the cathode processor and casting furnace account for ~2.4 wt% of the uranium relative to the feed.