ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Kwang-Wook Kim, Dong-Yong Chung, Han-Bum Yang, Jea-Kwan Lim, Eil-Hee Lee, Kee-Chan Song, Kyuseok Song
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 170-179
Technical Papers | Reprocessing | doi.org/10.13182/NT09-A7403
Articles are hosted by Taylor and Francis Online.
This work studied a conceptual process to recover uranium alone from spent nuclear fuel using high-alkaline carbonate media with hydrogen peroxide for the purposes of reducing the volume of high-level active waste and recycling of uranium from the spent fuel with greatly enhanced proliferation resistance, environmental friendliness, and operational safety. The transuranium (TRU) elements were evaluated to be undissolved and precipitated together with other fission products during the oxidative leaching of uranium from the spent fuel. The leaching ratio of uranium dioxide to TRU dioxide from spent fuel in the carbonate solution with H2O2 was estimated to be more than about 108. Only Cs, Tc, Mo, and Te among the major fission products in the spent fuel were dissolved together in the carbonate solution. In the carbonate solution with H2O2, UO2 was dissolved in the form of uranyl peroxo-carbonato complex ions, which could be recovered in the form of uranium peroxide precipitate with a very low solubility by acidification of the solution in a succeeding step. All the inorganic salts of Na2CO3, NaOH, and HNO3 used in the process suggested could be almost completely recovered and recycled into the process again without any generation of secondary wastes.