ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Abdullah Kadri, Raveendra K. Rao, Jin Jiang
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 156-169
Technical Papers | Nuclear Plant Operations and Control | doi.org/10.13182/NT09-3
Articles are hosted by Taylor and Francis Online.
There are two major barriers in deploying wireless communication systems in nuclear power plants (NPPs): (a) the electromagnetic compatibility (EMC) between the wireless devices and the existing plant instrumentation and control systems, and (b) the high levels of electromagnetic noise and interference from high-powered devices and ionizing radiation sources. In a typical NPP there exist strict regulations that limit transmission power levels to avoid interfering with the sensitive safety systems inside the containment such as ion chambers. This will result in performance degradation of wireless communication systems. This paper proposes a wireless communication scheme based on low-power chirp spread spectrum (CSS) signals, which meet with the EMC requirements of NPPs and also are capable of providing interference rejection. The advantage of such a scheme is that satisfactory performance can be obtained using low levels of transmission power. The structure of the optimal receiver for low-power binary CSS signals and a closed-form expression for asymptotic bit error rate of this receiver are derived. The electromagnetic environment within an NPP is modeled as a Gaussian-Gaussian mixture process, which is based on the measurement data published in a U.S. Nuclear Regulatory Commission Regulation (NUREG). The parameters in the model can be adjusted to suit a particular NPP site.