ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Thomas K. S. Liang, Chung-Yu Yang, Liang-Che Dai
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 146-155
Technical Papers | Thermal Hydraulics | doi.org/10.13182/NT09-A7401
Articles are hosted by Taylor and Francis Online.
In the innovative design of the advanced boiling water reactor (ABWR), conventional recirculation loops are removed and replaced by multiple reactor internal pumps. Therefore, there is no major penetration of the reactor pressure vessel (RPV) below the elevation of the top of active fuel. As a result, an ABWR loss-of-coolant accident (LOCA) can have a decreased impact on reactor safety. Moreover, in the new RPV design the injection points of all the conventional low-pressure emergency core cooling (ECC) systems (ECCSs) are shifted out of the core shroud to the downcomer and feedwater line as a new low-pressure ECCS, namely, a low-pressure flooder (LPFL). Consequently, the net hydraulic head built inside the downcomer will be the only driving force to bring the low-pressure ECC water into the core shroud during a large-break LOCA. In the analysis of a feedwater line break with RELAP5-3D/K, it was occasionally found that the hydraulic head built in the downcomer might not be great enough to bring the ECC water into the core shroud, and when the mixture water column ascends above the elevation of the feedwater rings, all the water injected by the LPFL will be directly driven to the break on the feedwater line. Fortunately, the capacity of the remaining high-pressure ECC flow directly injected above the core is great enough, and this ECC low-pressure injection bypass phenomenon can be terminated once the high-pressure ECC injection is manually turned off. This phenomenon of low-pressure ECC injection bypass is unexpected in the ABWR design, and it is worth further investigation.