ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Chang H. Oh, J. Han, R. Barner, E. S. Kim, S. Sherman
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 113-120
Technical Note | Nuclear Plant Operations and Control | doi.org/10.13182/NT09-A6973
Articles are hosted by Taylor and Francis Online.
The U.S. Department of Energy and Idaho National Laboratory are developing a next-generation nuclear plant, very high temperature gas-cooled reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient low-cost energy generation and (b) hydrogen production. While hydrogen production and advanced energy cycles are still in the early stages of development, research toward coupling VHTR, electrical generation, and hydrogen production is under way.This technical note includes the coupling of a VHTR with a power conversion unit. One of the power conversion configurations in the coupled plant is a combined Brayton cycle and Rankine cycle. This configuration uses a mixture of helium and nitrogen that allows the use of modified gas-turbine technology, including the same design techniques, material, and testing facilities used for conventional air gas turbines, to be used for the VHTR electricity production application. Exhaust heat from the turbine is transferred to a heat exchanger where the transferred heat is used to generate steam for a Rankine cycle.The study was focused on the verification of the steam generator model and comparisons of results from HYSYS and RELAP5-3D. This technical note concludes that the overall results are in good agreement despite the differences in size of different flow regime lengths. The overall heat transfer behavior deviated within ~2.1%, and exit temperatures and temperature drops across the steam generator also show reasonable agreement with <5.1% difference between the two methods.